|
Friday, December 23, 2016
LPTH Press Release: LightPath Technologies Completes Acquisition of ISP Optics Corporation
Saturday, December 17, 2016
LPTH Press Release: LightPath Technologies Prices Underwritten Public Offering of Class A Common Stock
|
Wednesday, December 14, 2016
TOMORROW! Seminar: "Irradiation-Enabled, Energy-Efficient Fabrication of Next Generation Nanocomposites for Plasmonics and Transmissive Optics" by Myungkoo Kang, 12.15.16/1:00PM-2:00PM/CREOL RM 103
Seminar: "Irradiation-Enabled, Energy-Efficient Fabrication of Next Generation Nanocomposites for Plasmonics and Transmissive Optics" by Myungkoo Kang
Thursday, December 15, 2016 1:00 PM to 2:00 PM
CREOL Room 103
CREOL Room 103
Myungkoo Kang
Department of Materials Science and Engineering
Pennsylvania State University
Department of Materials Science and Engineering
Pennsylvania State University
Abstract
Plasmonics and gradient refractive index (GRIN) optics provide unique opportunities to engineer material systems capable of novel properties that lie outside what is found in nature. Meanwhile, the fabrication of plasmonic devices and GRIN lenses has typically involved multi-step processes such as electron beam evaporation, lithography and lamination, typically limited to the front or back surface of device structures. Ion and laser irradiation has emerged as promising approaches to generate a wide variety of self-assembled nanostructures. While irradiation has been traditionally considered destructive and therefore contrary to most plasmonic and optical material manufacturing strategies, key ion-solid and light-matter interactions have been creatively exploited to enable the seemingly-destructive method to constructively fabricate structures, realizing counterintuitive results in the form of advanced functionalities. In this talk, I will focus on the influences of energetic ion and laser beams on a wide range of material systems including III-V compound semiconductors and chalcogenide glasses at the nanoscale and the formation of spatially-controlled nanostructures with desirable properties in the matrices. These technologies are promising for next generation plasmonic and transmissive optical applications.
The first part of my talk will focus on the utilization of focused ion beam (FIB) irradiation on a wide range of III-V semiconductors to self-assemble a wide variety of nanostructures including nanoparticles, nanorods and nanochains [1-5]. Furthermore, I will present our recent results on the utilization of the tunable localized surface plasmon resonance energies in the FIB-assembled nanopartice arrays to enhance light emission efficiencies of compound semiconductors, thereby providing a promising alternative to plasmonic materials [6-8]. The second part of my talk will focus on our recent progress in creating advanced optical functionality in chalcogenide-based nanocomposites for diverse applications. Specifically, our research team was the first to utilize laser exposure on chalcogenide glasses to create spatially-controlled metallic nanocrystals with refractive indices greater than those of glass matrices at temperatures lower than those required in traditional processes. This approach enables gradient GRIN lenses expected to replace complex optical components, thereby opening up new opportunities for researchers to exploit increased design flexibility and cost-effectiveness for future microlens-based devices [9]. Lastly, I will discuss questions which emerge as consequences of my research projects, and propose near future plans to develop a broadly applicable toolkit that will enable tailoring light-matter interactions for a wide range of applications in plasmonics, GRIN optics and the hybrid technology combining these two emerging fields, named GRIN-Plasmonics.
Plasmonics and gradient refractive index (GRIN) optics provide unique opportunities to engineer material systems capable of novel properties that lie outside what is found in nature. Meanwhile, the fabrication of plasmonic devices and GRIN lenses has typically involved multi-step processes such as electron beam evaporation, lithography and lamination, typically limited to the front or back surface of device structures. Ion and laser irradiation has emerged as promising approaches to generate a wide variety of self-assembled nanostructures. While irradiation has been traditionally considered destructive and therefore contrary to most plasmonic and optical material manufacturing strategies, key ion-solid and light-matter interactions have been creatively exploited to enable the seemingly-destructive method to constructively fabricate structures, realizing counterintuitive results in the form of advanced functionalities. In this talk, I will focus on the influences of energetic ion and laser beams on a wide range of material systems including III-V compound semiconductors and chalcogenide glasses at the nanoscale and the formation of spatially-controlled nanostructures with desirable properties in the matrices. These technologies are promising for next generation plasmonic and transmissive optical applications.
The first part of my talk will focus on the utilization of focused ion beam (FIB) irradiation on a wide range of III-V semiconductors to self-assemble a wide variety of nanostructures including nanoparticles, nanorods and nanochains [1-5]. Furthermore, I will present our recent results on the utilization of the tunable localized surface plasmon resonance energies in the FIB-assembled nanopartice arrays to enhance light emission efficiencies of compound semiconductors, thereby providing a promising alternative to plasmonic materials [6-8]. The second part of my talk will focus on our recent progress in creating advanced optical functionality in chalcogenide-based nanocomposites for diverse applications. Specifically, our research team was the first to utilize laser exposure on chalcogenide glasses to create spatially-controlled metallic nanocrystals with refractive indices greater than those of glass matrices at temperatures lower than those required in traditional processes. This approach enables gradient GRIN lenses expected to replace complex optical components, thereby opening up new opportunities for researchers to exploit increased design flexibility and cost-effectiveness for future microlens-based devices [9]. Lastly, I will discuss questions which emerge as consequences of my research projects, and propose near future plans to develop a broadly applicable toolkit that will enable tailoring light-matter interactions for a wide range of applications in plasmonics, GRIN optics and the hybrid technology combining these two emerging fields, named GRIN-Plasmonics.
Biography:
Myungkoo Kang earned his Ph.D. degree under the supervision of Professor Rachel S. Goldman in the Department of Materials Science and Engineering at the University of Michigan in 2014. During his Ph.D, he extensively studied the influence of energetic ion beams on a wide range of III-V compound semiconductors at the nanoscale and demonstrated the counterintuitive self-assembly of novel nanostructures arrays with arbitrarily tunable dimensions. He systematically characterized localized surface plasmon resonances of ion irradiation-induced Ga nanoparticle arrays with performance comparable to those of Ag and Au nanoparticles, and demonstrated Ga nanoparticle plasmon-induced enhancement of light emission from GaAs up to 3.3X, which is the first ever combination of a new plasmonic material (Ga) and a new fabrication method (ion beam) for plasmonics. Since then, he has been continuing his academic career as a post-doctoral research fellow under the co-supervision of Professor Theresa S. Mayer in the Department of Electrical Engineering (currently vice president for research and innovation at Virginia Tech) and Distinguished Professor Carlo G. Pantano in the Department of Materials Science and Engineering at Pennsylvania State University. During his tenure as a postdoctoral research fellow, he has developed and demonstrated a new laser exposure-based process for gradient refractive index fabrication using multicomponent Ge-As-Se-Pb thin film and bulk systems with high Pb content that provides an opportunity for next generation mid-wavelength infrared lenses. Using spatially-controlled ion and laser irradiation processes and cutting edge material/optical characterizations such as high-resolution transmission electron microscopy and spectroscopic ellipsometry, he is striving to understand how energetic ion and laser irradiation processes can be optimized on a wide range of semiconductors and glass systems to efficiently create novel nanocomposites with spatially-tunable nanostructure dimensions and desirable properties that are promising for next generation plasmonic and transmissive optical devices, respectively.
For more information:
Dr. Kathleen A. Richardson
Tuesday, December 13, 2016
Seminar: "Irradiation-Enabled, Energy-Efficient Fabrication of Next Generation Nanocomposites for Plasmonics and Transmissive Optics" by Myungkoo Kang, 12.15.16/1:-00PM-2:00PM/CREOL RM 103
Seminar: "Irradiation-Enabled, Energy-Efficient Fabrication of Next Generation Nanocomposites for Plasmonics and Transmissive Optics" by Myungkoo Kang
Thursday, December 15, 2016 1:00 PM to 2:00 PM
CREOL Room 103
CREOL Room 103
Myungkoo Kang
Department of Materials Science and Engineering
Pennsylvania State University
Department of Materials Science and Engineering
Pennsylvania State University
Abstract
Plasmonics and gradient refractive index (GRIN) optics provide unique opportunities to engineer material systems capable of novel properties that lie outside what is found in nature. Meanwhile, the fabrication of plasmonic devices and GRIN lenses has typically involved multi-step processes such as electron beam evaporation, lithography and lamination, typically limited to the front or back surface of device structures. Ion and laser irradiation has emerged as promising approaches to generate a wide variety of self-assembled nanostructures. While irradiation has been traditionally considered destructive and therefore contrary to most plasmonic and optical material manufacturing strategies, key ion-solid and light-matter interactions have been creatively exploited to enable the seemingly-destructive method to constructively fabricate structures, realizing counterintuitive results in the form of advanced functionalities. In this talk, I will focus on the influences of energetic ion and laser beams on a wide range of material systems including III-V compound semiconductors and chalcogenide glasses at the nanoscale and the formation of spatially-controlled nanostructures with desirable properties in the matrices. These technologies are promising for next generation plasmonic and transmissive optical applications.
The first part of my talk will focus on the utilization of focused ion beam (FIB) irradiation on a wide range of III-V semiconductors to self-assemble a wide variety of nanostructures including nanoparticles, nanorods and nanochains [1-5]. Furthermore, I will present our recent results on the utilization of the tunable localized surface plasmon resonance energies in the FIB-assembled nanopartice arrays to enhance light emission efficiencies of compound semiconductors, thereby providing a promising alternative to plasmonic materials [6-8]. The second part of my talk will focus on our recent progress in creating advanced optical functionality in chalcogenide-based nanocomposites for diverse applications. Specifically, our research team was the first to utilize laser exposure on chalcogenide glasses to create spatially-controlled metallic nanocrystals with refractive indices greater than those of glass matrices at temperatures lower than those required in traditional processes. This approach enables gradient GRIN lenses expected to replace complex optical components, thereby opening up new opportunities for researchers to exploit increased design flexibility and cost-effectiveness for future microlens-based devices [9]. Lastly, I will discuss questions which emerge as consequences of my research projects, and propose near future plans to develop a broadly applicable toolkit that will enable tailoring light-matter interactions for a wide range of applications in plasmonics, GRIN optics and the hybrid technology combining these two emerging fields, named GRIN-Plasmonics.
Plasmonics and gradient refractive index (GRIN) optics provide unique opportunities to engineer material systems capable of novel properties that lie outside what is found in nature. Meanwhile, the fabrication of plasmonic devices and GRIN lenses has typically involved multi-step processes such as electron beam evaporation, lithography and lamination, typically limited to the front or back surface of device structures. Ion and laser irradiation has emerged as promising approaches to generate a wide variety of self-assembled nanostructures. While irradiation has been traditionally considered destructive and therefore contrary to most plasmonic and optical material manufacturing strategies, key ion-solid and light-matter interactions have been creatively exploited to enable the seemingly-destructive method to constructively fabricate structures, realizing counterintuitive results in the form of advanced functionalities. In this talk, I will focus on the influences of energetic ion and laser beams on a wide range of material systems including III-V compound semiconductors and chalcogenide glasses at the nanoscale and the formation of spatially-controlled nanostructures with desirable properties in the matrices. These technologies are promising for next generation plasmonic and transmissive optical applications.
The first part of my talk will focus on the utilization of focused ion beam (FIB) irradiation on a wide range of III-V semiconductors to self-assemble a wide variety of nanostructures including nanoparticles, nanorods and nanochains [1-5]. Furthermore, I will present our recent results on the utilization of the tunable localized surface plasmon resonance energies in the FIB-assembled nanopartice arrays to enhance light emission efficiencies of compound semiconductors, thereby providing a promising alternative to plasmonic materials [6-8]. The second part of my talk will focus on our recent progress in creating advanced optical functionality in chalcogenide-based nanocomposites for diverse applications. Specifically, our research team was the first to utilize laser exposure on chalcogenide glasses to create spatially-controlled metallic nanocrystals with refractive indices greater than those of glass matrices at temperatures lower than those required in traditional processes. This approach enables gradient GRIN lenses expected to replace complex optical components, thereby opening up new opportunities for researchers to exploit increased design flexibility and cost-effectiveness for future microlens-based devices [9]. Lastly, I will discuss questions which emerge as consequences of my research projects, and propose near future plans to develop a broadly applicable toolkit that will enable tailoring light-matter interactions for a wide range of applications in plasmonics, GRIN optics and the hybrid technology combining these two emerging fields, named GRIN-Plasmonics.
Biography:
Myungkoo Kang earned his Ph.D. degree under the supervision of Professor Rachel S. Goldman in the Department of Materials Science and Engineering at the University of Michigan in 2014. During his Ph.D, he extensively studied the influence of energetic ion beams on a wide range of III-V compound semiconductors at the nanoscale and demonstrated the counterintuitive self-assembly of novel nanostructures arrays with arbitrarily tunable dimensions. He systematically characterized localized surface plasmon resonances of ion irradiation-induced Ga nanoparticle arrays with performance comparable to those of Ag and Au nanoparticles, and demonstrated Ga nanoparticle plasmon-induced enhancement of light emission from GaAs up to 3.3X, which is the first ever combination of a new plasmonic material (Ga) and a new fabrication method (ion beam) for plasmonics. Since then, he has been continuing his academic career as a post-doctoral research fellow under the co-supervision of Professor Theresa S. Mayer in the Department of Electrical Engineering (currently vice president for research and innovation at Virginia Tech) and Distinguished Professor Carlo G. Pantano in the Department of Materials Science and Engineering at Pennsylvania State University. During his tenure as a postdoctoral research fellow, he has developed and demonstrated a new laser exposure-based process for gradient refractive index fabrication using multicomponent Ge-As-Se-Pb thin film and bulk systems with high Pb content that provides an opportunity for next generation mid-wavelength infrared lenses. Using spatially-controlled ion and laser irradiation processes and cutting edge material/optical characterizations such as high-resolution transmission electron microscopy and spectroscopic ellipsometry, he is striving to understand how energetic ion and laser irradiation processes can be optimized on a wide range of semiconductors and glass systems to efficiently create novel nanocomposites with spatially-tunable nanostructure dimensions and desirable properties that are promising for next generation plasmonic and transmissive optical devices, respectively.
For more information:
Dr. Kathleen A. Richardson
Friday, December 9, 2016
LPTH Press Release: LightPath Technologies Announces Results of Special Meeting of Stockholders
|
Tuesday, December 6, 2016
OSA Traveling Lecturer Talk: "Measuring Everything You've Always Wanted to Know About a Light Pulse" by Dr. Rick Trebino Monday, December 19th, 2016 4:00 PM to 5:00 PM CREOL Room 103
OSA Traveling Lecturer Talk: "Measuring Everything You've Always Wanted to Know About a Light Pulse" by Dr. Rick Trebino
Monday, December 19th, 2016 4:00 PM to 5:00 PM
CREOL Room 103
Donuts and coffee will be served.
Dr. Rick TrebinoGeorgia Research Alliance-Eminent Scholar Chair of Ultrafast Optical Physics at the Georgia Institute of Technology
Abstract:
The vast majority of the greatest scientific discoveries of all time have resulted directly from more powerful techniques for measuring light. Indeed, our most important source of information about our universe is light, and our ability to extract information from it is limited only by our ability to measure it.
Interestingly, the vast majority of light in our universe remains immeasurable, involving long pulses of relatively broadband light, necessarily involving ultrafast and extremely complex temporal variations in their intensity and phase. So it is important to develop techniques for measuring, ever more completely, light with ever more complex submicron detail in space and ever more complex ultrafast variations in time. The problem is severely complicated by the fact that the timescales involved correspond to the shortest events ever created, and measuring an event in time seems to require a shorter one, which, by definition, doesn’t exist!
Nevertheless, we have developed simple, elegant methods for completely measuring these events, yielding a light pulse's intensity and phase vs. time and space. One involves making an optical spectrogram of the pulse in a nonlinear optical medium and whose mathematics is equivalent to the two-dimensional phase-retrieval problem—a problem that’s solvable only because the Fundamental Theorem of Algebra fails for polynomials of two variables. And we have recently developed simple methods for measuring the complete spatio-temporal electric field [E(x,y,z,t)] of an arbitrary light pulse—even for a single pulse.
Biography:
Rick Trebino received his B.A. from Harvard University in 1977 and his Ph.D. degree from Stanford University in 1983. His dissertation research involved the development of a technique for the measurement of ultrafast events in the frequency domain using long-pulse lasers by creating moving gratings. He continued this research during a three-year term as a physical sciences research associate at Stanford. In 1986, he moved to Sandia National Laboratories in Livermore, California. There he developed Frequency-Resolved Optical Gating (FROG), the first technique for the measurement of the intensity and phase of ultrashort laser pulses. In 1998, he became the Georgia Research Alliance-Eminent Scholar Chair of Ultrafast Optical Physics at the Georgia Institute of Technology, where he currently studies ultrafast optics and applications.
Prof. Trebino has received several prizes, including the SPIE’s Edgerton Prize, and he was an IEEE Lasers and Electro-Optics Society Distinguished Lecturer. He is a Fellow of the Optical Society of America, the American Physical Society, the American Association for the Advancement of Science, and the Society of Photo-Instrumentation Engineers. His interests include adventure travel, archaeology, photography, humor-writing, and primitive art.
For additional information:
Rachel Sampson
Seminar: "Irradiation-Enabled, Energy-Efficient Fabrication of Next Generation Nanocomposites for Plasmonics and Transmissive Optics" by Myungkoo Kang, 12.15.16/1:-00PM-2:00PM/CREOL RM 103
Seminar: "Irradiation-Enabled, Energy-Efficient Fabrication of Next Generation Nanocomposites for Plasmonics and Transmissive Optics" by Myungkoo Kang
Thursday, December 15, 2016 1:00 PM to 2:00 PM
CREOL Room 103
CREOL Room 103
Myungkoo Kang
Department of Materials Science and Engineering
Pennsylvania State University
Department of Materials Science and Engineering
Pennsylvania State University
Abstract
Plasmonics and gradient refractive index (GRIN) optics provide unique opportunities to engineer material systems capable of novel properties that lie outside what is found in nature. Meanwhile, the fabrication of plasmonic devices and GRIN lenses has typically involved multi-step processes such as electron beam evaporation, lithography and lamination, typically limited to the front or back surface of device structures. Ion and laser irradiation has emerged as promising approaches to generate a wide variety of self-assembled nanostructures. While irradiation has been traditionally considered destructive and therefore contrary to most plasmonic and optical material manufacturing strategies, key ion-solid and light-matter interactions have been creatively exploited to enable the seemingly-destructive method to constructively fabricate structures, realizing counterintuitive results in the form of advanced functionalities. In this talk, I will focus on the influences of energetic ion and laser beams on a wide range of material systems including III-V compound semiconductors and chalcogenide glasses at the nanoscale and the formation of spatially-controlled nanostructures with desirable properties in the matrices. These technologies are promising for next generation plasmonic and transmissive optical applications.
The first part of my talk will focus on the utilization of focused ion beam (FIB) irradiation on a wide range of III-V semiconductors to self-assemble a wide variety of nanostructures including nanoparticles, nanorods and nanochains [1-5]. Furthermore, I will present our recent results on the utilization of the tunable localized surface plasmon resonance energies in the FIB-assembled nanopartice arrays to enhance light emission efficiencies of compound semiconductors, thereby providing a promising alternative to plasmonic materials [6-8]. The second part of my talk will focus on our recent progress in creating advanced optical functionality in chalcogenide-based nanocomposites for diverse applications. Specifically, our research team was the first to utilize laser exposure on chalcogenide glasses to create spatially-controlled metallic nanocrystals with refractive indices greater than those of glass matrices at temperatures lower than those required in traditional processes. This approach enables gradient GRIN lenses expected to replace complex optical components, thereby opening up new opportunities for researchers to exploit increased design flexibility and cost-effectiveness for future microlens-based devices [9]. Lastly, I will discuss questions which emerge as consequences of my research projects, and propose near future plans to develop a broadly applicable toolkit that will enable tailoring light-matter interactions for a wide range of applications in plasmonics, GRIN optics and the hybrid technology combining these two emerging fields, named GRIN-Plasmonics.
Plasmonics and gradient refractive index (GRIN) optics provide unique opportunities to engineer material systems capable of novel properties that lie outside what is found in nature. Meanwhile, the fabrication of plasmonic devices and GRIN lenses has typically involved multi-step processes such as electron beam evaporation, lithography and lamination, typically limited to the front or back surface of device structures. Ion and laser irradiation has emerged as promising approaches to generate a wide variety of self-assembled nanostructures. While irradiation has been traditionally considered destructive and therefore contrary to most plasmonic and optical material manufacturing strategies, key ion-solid and light-matter interactions have been creatively exploited to enable the seemingly-destructive method to constructively fabricate structures, realizing counterintuitive results in the form of advanced functionalities. In this talk, I will focus on the influences of energetic ion and laser beams on a wide range of material systems including III-V compound semiconductors and chalcogenide glasses at the nanoscale and the formation of spatially-controlled nanostructures with desirable properties in the matrices. These technologies are promising for next generation plasmonic and transmissive optical applications.
The first part of my talk will focus on the utilization of focused ion beam (FIB) irradiation on a wide range of III-V semiconductors to self-assemble a wide variety of nanostructures including nanoparticles, nanorods and nanochains [1-5]. Furthermore, I will present our recent results on the utilization of the tunable localized surface plasmon resonance energies in the FIB-assembled nanopartice arrays to enhance light emission efficiencies of compound semiconductors, thereby providing a promising alternative to plasmonic materials [6-8]. The second part of my talk will focus on our recent progress in creating advanced optical functionality in chalcogenide-based nanocomposites for diverse applications. Specifically, our research team was the first to utilize laser exposure on chalcogenide glasses to create spatially-controlled metallic nanocrystals with refractive indices greater than those of glass matrices at temperatures lower than those required in traditional processes. This approach enables gradient GRIN lenses expected to replace complex optical components, thereby opening up new opportunities for researchers to exploit increased design flexibility and cost-effectiveness for future microlens-based devices [9]. Lastly, I will discuss questions which emerge as consequences of my research projects, and propose near future plans to develop a broadly applicable toolkit that will enable tailoring light-matter interactions for a wide range of applications in plasmonics, GRIN optics and the hybrid technology combining these two emerging fields, named GRIN-Plasmonics.
Biography:
Myungkoo Kang earned his Ph.D. degree under the supervision of Professor Rachel S. Goldman in the Department of Materials Science and Engineering at the University of Michigan in 2014. During his Ph.D, he extensively studied the influence of energetic ion beams on a wide range of III-V compound semiconductors at the nanoscale and demonstrated the counterintuitive self-assembly of novel nanostructures arrays with arbitrarily tunable dimensions. He systematically characterized localized surface plasmon resonances of ion irradiation-induced Ga nanoparticle arrays with performance comparable to those of Ag and Au nanoparticles, and demonstrated Ga nanoparticle plasmon-induced enhancement of light emission from GaAs up to 3.3X, which is the first ever combination of a new plasmonic material (Ga) and a new fabrication method (ion beam) for plasmonics. Since then, he has been continuing his academic career as a post-doctoral research fellow under the co-supervision of Professor Theresa S. Mayer in the Department of Electrical Engineering (currently vice president for research and innovation at Virginia Tech) and Distinguished Professor Carlo G. Pantano in the Department of Materials Science and Engineering at Pennsylvania State University. During his tenure as a postdoctoral research fellow, he has developed and demonstrated a new laser exposure-based process for gradient refractive index fabrication using multicomponent Ge-As-Se-Pb thin film and bulk systems with high Pb content that provides an opportunity for next generation mid-wavelength infrared lenses. Using spatially-controlled ion and laser irradiation processes and cutting edge material/optical characterizations such as high-resolution transmission electron microscopy and spectroscopic ellipsometry, he is striving to understand how energetic ion and laser irradiation processes can be optimized on a wide range of semiconductors and glass systems to efficiently create novel nanocomposites with spatially-tunable nanostructure dimensions and desirable properties that are promising for next generation plasmonic and transmissive optical devices, respectively.
For more information:
Dr. Kathleen A. Richardson
Friday, November 18, 2016
SPIE Student Chapter Seminar: "Designing the James Webb Space Telescope" by Dr. Jonathan Arenberg, 11.29.16/12:00PM-1:00PM/ CREOL RM 102/103
SPIE Student Chapter Seminar: "Designing the James Webb Space Telescope" by Dr. Jonathan Arenberg
Tuesday, November 29, 2016 12:00 PM to 1:00 PM
CREOL Room 102/103
CREOL Room 102/103
Dr. Jonathan Arenberg
Abstract:
The James Webb Space Telescope (JWST) is being designed and built to see the furthest visible objects in the Universe and is NASA's flagship space astrophysics mission. This lecture will discuss how JWST's mission is being achieved and the current project status. The main science themes for JWST will be introduced and the flow of mission requirements into the hardware design and operations concepts will be explored. Emphasis will be given to how the non-optical aspects, such as thermal, packaging and dynamics of the system contribute to the scientific performance. Examples of solutions to archetypal interdisciplinary JWST design problems will be shown. Finally, the current status of the flight hardware as it proceeds through manufacture, assembly, integration and test.
Biography:Jonathan Arenberg has been with Northrop Grumman Aerospace Systems since 1989 having started with Hughes Aircraft Company. His work experience includes optical, space and laser systems. Dr. Arenberg has worked on such astronomical programs as the Chandra X-ray Observatory, James Webb Space Telescope and helped develop the New Worlds Observer concept for the imaging of extra-solar planets. He has also worked on major high-energy and tactical laser systems, laser component engineering and metrology issues. He is a member of the ISO sub-committee charged with writing standards for laser and electro-optic systems and components, SPIE, American Astronomical Society and AIAA. Dr. Arenberg holds a BS in physics and an MS and PhD in engineering, all from the University of California, Los Angeles. He is the author of over 100 conference presentations and publications, and holds 11 U.S. Patents in a wide variety of areas of technology with US and foreign patents pending.
For more information:
Steffen Wittek
Tuesday, November 15, 2016
LPTH Press Release: LightPath Technologies Reports Fiscal 2017 Q1 Financial Results
|
Subscribe to:
Posts (Atom)